Iron(II) Complexes with the Chelating Bidentate Isonitrile Ligand DiNC

JOSEPH A. KARGOL and ROBERT J. ANGELICI

Department of Chemistry, Iowa State University, Ames, Iowa 50011, U.S.A.

Received May 6, 1982

A series of Fe(II) complexes containing the chelating bidentate isonitrile ligand DiNC have been prepared and characterized. Both cis and trans isomers of $FeCl_2(DiNC)_2$ are obtained from the reaction of $FeCl_2 \cdot 4H_2O$ with DiNC. One $C\Gamma$ in cis-FeCl₂(DiNC)₂ is readily substituted by various ligands L to yield the $FeCl(L)(DiNC)_{2}^{+}$ complexes, where L = CO, PPh_{3} , AsPh₃, $P(OPh)_3$, or C_5H_5N . Mercuric chloride reacts with cis-FeCl₂(DiNC)₂ to give the adduct cis-Fe- $(DiNC)_2 Cl_2 \cdot HgCl_2$, which is converted to the [FeCl- $(L)(DiNC)_2$ | HgCl₃, L = CO or CDMe, salts upon reaction with CO and CNMe. Combination of cis-FeCl₂- $(DiNC)_2$ with the proper stoichiometry of $SnCl_2$. $2H_2O$ yields the -SnCl₃ complexes, cis-FeCl(DiNC)₂- $(SnCl_3)$ and cis-Fe(DiNC)₂ $(SnCl_3)_2$. A comparison of these results with previously known chemistry of related Fe(II) monodentate arylisonitrile complexes indicates that, except for the required cis isonitrile donor geometry of DiNC, the ligand properties of DiNC are very similar to those of related monodentate aryl isonitrile ligands.

Introduction

The bidentate diisonitrile ligand DiNC,

has been shown to form chelate complexes of the type $M(CO)_4(DiNC)$ (where M = Cr, Mo, W), Mn- $(CO)_3(DiNC)Br$, $CpFe(CO)(DiNC)^*$, $CpFe(CS)-(DiNC)^*$ and $Rh(DiNC)_2^*$ [1-3]. In the work described herein, these studies have been extended to a series of Fe(II)-DiNC coordination compounds in order to determine if the chelating nature of the DiNC ligand appreciably alters the chemistry from that already known for Fe(II)-monodentate isonitrile complexes.

0020-1693/83/0000-0000/\$03.00

Experimental Section

Chemicals and solvents were of reagent grade and used as received from commercial sources. All reactions were performed in an air atmosphere. The bidentate isonitrile ligand DiNC was prepared as described previously [1, 2]. Infrared band positions were measured on a Perkin-Elmer 281 or 337B spectrophotometer and referenced to bands of gaseous CO. ¹H NMR spectra were recorded on a Perkin-Elmer R-20B or Varian HA-100 spectrometer using tetramethylsilane as the internal reference. Elemental analyses were performed by Galbraith Laboratories, Knoxville, TN.

Preparation of Compounds

cis- and trans-FeCl₂(DiNC)₂

To FeCl₂·4H₂O (0.093 g, 0.46 mmol) in 30 ml of MeOH was added a solution of DiNC (0.24 g, 0.92 mmol) in a minimum volume of CH₂Cl₂. The pale yellow solution darkened immediately to give a reddish solution and a suspended precipitate. The solution was stirred at room temperature for 30 min, then filtered to remove a blue solid. This solid appears to be primarily trans-FeCl₂(DiNC)₂ (ν (CN): 2144 cm⁻¹; 28% yield). The cis isomer was obtained by evaporating the orange filtrate to ¼ its volume under vacuum and adding Et₂O. The resulting precipitate was recrystallized by dissolving in MeOH; concentration of the solution under vacuum gave pure orange cis-FeCl₂(DiNC)₂ in 34% yield. Anal. Calcd. for C₃₂H₂₄N₄O₄Cl₂Fe: C, 58.65; H, 3.69. Found: C, 58.18; H, 3.62. The yield of cis-FeCl₂(DiNC)₂ varied in each preparation, apparently depending upon the relative amounts of the MeOH and CH2-Cl₂ solvents that were used.

Pure trans-FeCl₂(DiNC)₂ was obtained by dissolving the *cis* isomer in CHCl₃ and stirring the solution for several days at room temperature (heating causes some decomposition) until all of the orange *cis* isomer had been converted to the blue *trans*

© Elsevier Sequoia/Printed in Switzerland

form. *Anal.* Calcd for C₃₂H₂₄N₄O₄Cl₂Fe: C, 58.65; H, 3.69. Found: C, 58.37; H, 4.09.

$cis-Fe(DiNC)_2 Cl_2 \cdot HgCl_2$

Solid HgCl₂ (0.021 g, 0.076 mmol) was added to a solution of *cis*-FeCl₂(DiNC)₂ (0.050 g, 0.076 mmol) in 50 ml of CHCl₃. While the suspension was stirred for 3 h, the orange solution gradually darkened and a red-orange precipitate of *cis*-Fe(DiNC)₂ Cl₂ ·HgCl₂ (77% yield) formed. *Anal.* Calcd. for C₃₂H₂₄N₄O₄-Cl₄FeHg: C, 41.47; H, 2.61; Found: C, 40.86; H, 2.59.

$cis-FeCl(DiNC)_2(SnCl_3)$

To cis-FeCl₂(DiNC)₂ (0.050 g, 0.076 mmol) in 40 ml of CHCl₃ was added solid SnCl₂·2H₂O (0.017 g, 0.076 mmol). After the solution was stirred for 3 h, its volume was reduced under vacuum causing precipitation of yellow-orange cis-FeCl(DiNC)₂-(SnCl₃) in 70% yield. *Anal.* Calcd. for C₃₂ H₂₄ N₄ O₄-Cl₄FeSn: C, 45.49; H, 2.86. Found: C, 45.90; H, 3.06.

cis-Fe(SnCl₃)₂(DiNC)₂

A large excess of solid $SnCl_2 \cdot 2H_2O(0.17 \text{ g}, 0.76 \text{ mmol})$ was added to a solution of *cis*-FeCl₂(DiNC)₂ (0.050 g, 0.076 mmol) in 50 ml of CHCl₃. After stirring the mixture for at least 12 h, the excess $SnCl_2 \cdot 2H_2O$ was removed by filtration, and the solution was evaporated to 1/5 its volume. The addition of Et_2O precipitated yellow microcrystalline needles of *cis*-Fe(SnCl₃)₂(DiNC)₂, which were removed by filtration and were then recrystallized from MeOH in 60% yield. *Anal.* Calcd. for $C_{32}H_{24}N_4O_4Cl_6FeSn_2$: C, 37.15; H, 2.34. Found: C, 36.84; H, 2.62.

[cis-FeCl(CNMe)(DiNC)₂] HgCl₃

To Fe(DiNC)₂ Cl₂ · HgCl₂ (0.10 g, 0.11 mmol) in 20 ml of acetone was added 0.44 mmol of MeNC *via* syringe. The mixture was stirred for 12 h during which time the starting complex dissolved to give a yellow solution. The volume of this solution was reduced under vacuum and Et₂O addition precipitated the yellow product. Reprecipitation from MeOH/EtOH with Et₂O gave [FeCl(CNMe)(DiNC)₂] HgCl₃ in 85% yield. *Anal.* Calcd. for C₃₄ H₂₇N₅-O₄Cl₄FeHg: C, 42.19; H, 2.81. Found: C, 41.74; H, 2.73.

[FeCl(CO)(DiNC)₂] BPh₄

Carbon monoxide was bubbled through a solution of *cis*-FeCl₂(DiNC)₂ (0.10 g, 0.15 mmol) in 50 ml of MeOH for 12 h or until most of the complex had dissolved. The yellow solution was filtered to remove any insoluble material and then concentrated under vacuum. Addition of a solution of NaBPh₄ (0.050 g, 0.15 mmol) in 15 ml of MeOH precipitated pale yellow [FeCl(CO)(DiNC)₂] BPh₄ in 60% yield. Anal. Calcd. for $C_{57}H_{44}N_4O_5BFeCl$: C, 70.79; H, 4.59. Found: C, 70.99; H, 4.56.

$[FeCl(L)(DiNC)_2]BPh_4$, where $L = PPh_3$, $AsPh_3$, $P(OPh)_3$, C_5H_5N

The desired ligand L was added in 10% excess, either as a solid or neat liquid, to cis-FeCl₂(DiNC)₂ (0.10 g, 0.15 mmol) in 50 ml of MeOH. While the solution was stirred for 3–4 h, most of the complex dissolved and the solution changed from orange to yellow (except for AsPh₃ which remained orange). After the solution was filtered, a solution of NaBPh₄ (0.050 g, 0.15 mmol) in 15 ml of MeOH was added to precipitate the product in 40–60% yield. All of the compounds were yellow except for that of AsPh₃, which was orange.

Anal. Calcd. for [FeCl(PPh₃)(DiNC)₂]BPh₄: C, 73.98; H, 4.95. Found: C, 72.94; H, 5.04.

- *Anal.* Calcd. for [FeCl(AsPh₃)(DiNC)₂]BPh₄: C, 71.37; H, 4.78. Found: C, 71.41; H, 4.73.
- *Anal.* Calcd. for [FeCl(P(OPh)₃)(DiNC)₂]BPh₄: C, 71.14; H, 4.76. Found: C, 70.94; H, 4.82.
- Anal. Calcd. for $[FeCl(C_5H_5N)(DiNC)_2]BPh_4$: C, 71.96; H, 4.85. Found: C, 72.13; H, 4.89.

All complexes are relatively air stable but decompose slowly when exposed to air for long periods (weeks). The CO-containing compounds are the least stable.

Results and Discussion

The reaction of FeCl₂·4H₂O with DiNC in MeOH leads to the precipitation of the insoluble blue trans-FeCl₂(DiNC)₂ complex. The orange cis-FeCl₂- $(DiNC)_2$ isomer can be isolated from the solution. Structural assignments of these two isomers are based on the single $\nu(CN)$ absorption which is expected for the pseudo-D_{4h} symmetry of the trans isomer and the four expected absorptions of the cis form (Table I). Although only 3 ν (CN) bands are observed for cis-FeCl₂(DiNC)₂, their broadness may obscure the fourth band. These assignments are supported by the colors of several related FeCl₂(CNR)₄ complexes, which exist in blue-to-violet trans forms and yellowto-orange cis forms [4-9]. Infrared spectra of the FeCl₂(CNR)₄ complexes are also very similar to those of cis- and trans-FeCl₂(DiNC)₂ [5-9].

When *trans*-FeCl₂(DiNC)₂ is suspended in MeOH, EtOH, dimethylformamide, or dimethylsulfoxide, the complex gradually dissolves as it isomerizes to the *cis* isomer. Conversely, *cis*-FeCl₂(DiNC)₂, when dissolved in CHCl₃ or CH₂Cl₂, slowly isomerizes to the *trans* isomer which precipitates from solution.

Reactions of cis-FeCl₂(DiNC)₂ are summarized in Scheme I. A few reactions were tried with the *trans* isomer, but these were all much slower than

Fe(II) Complexes of Chelating Isonitrile

TABLE I. Infrared and "H NMR Data

Compound	$\nu(CN)^{a}$, cm ⁻¹	¹ H Chemical Shifts, δ ppm ^b	
		-CH ₂ CH ₂ -	C ₆ H ₄
DiNC	2127s	4.48	6.78-7.50
cis-FeCl ₂ (DiNC) ₂	2195w, 2156s,br, 2143s,br ^c	4.5br ^d	6.92-7.92 ^{d,e}
trans-FeCl ₂ (DiNC) ₂	2144		
cis-Fe(DiNC) ₂ Cl ₂ · HgCl ₂	2208m, 2170s, 2159s		
cis-FeCl(DiNC) ₂ (SnCl ₃)	2188m, 2157sh, 2144s		
cis-Fe(SnCl ₃) ₂ (DiNC) ₂	2193m, 2150s, 2140s		
[cis-FeCl(CNMe)(DiNC) ₂]HgCl ₃	2203m, 2188sh, 2178s, 2152s ^f	3.75, 4.46 ^g	7.30-7.70 ^g
[cis-FeCl(CO)(DiNC) ₂]HgCl ₃	2223w, 2195sh, 2185s ^h		
[FeCl(CO)(DiNC) ₂]BPh ₄	2225w, 2182s,br ⁱ	3.78-4.08br	$6.6 - 7.1^{j}$
[FeCl(PPh ₃)(DiNC) ₂] BPh ₄	2198m, 2150s	3.85br, ^k 4.11	$6.61 - 7.20^{1}$
[FeCl(AsPh ₃)(DiNC) ₂] BPh ₄	2195m, 2156s, 2145s	3.76br ^k , 4.08	$6.60 - 7.16^{j}$
[FeCl(P(OPh) ₃)(DiNC) ₂] BPh ₄	2201m, 2161s	3.88, 4.00	$6.60 - 7.10^{m}$
[FeCl(C ₅ H ₅ N)(DiNC) ₂]BPh ₄	2190w, 2155s,br, 2144sh	3.90, 4.18	6.70–7.18 ^m
[FeCl(C ₅ H ₅ N)(DiNC) ₂]BPh ₄		3.50, 4.54br ⁿ	$6.82 - 7.10^{n}$

^aNujol mull. Abbreviations: w, weak; m, medium; s, strong; sh, shoulder; br, broad. ^bIn CDCl₃ unless undicated otherwise. ^c2195w, 2160s, 2134sh cm⁻¹ in CHCl₃. ^dIn CD₃OD. ^eBroad multiplet. ^f ν (CN) of CNMe at 2239 m cm⁻¹. ^gIn (CD₃)₂-SO; CH₃ at 3.25 ppm. ^h ν (CO) at 2085 cm⁻¹. ⁱ ν (CO) at 2086 cm⁻¹. ^jBPh₄ at 7.45 ppm^k. ^kCenter of resonance. ^lBPh₄ at 7.40 ppm^k. ^mBPh₄ at 7.42 ppm^k. ⁿIn (CD₃)₂SO; BPh₄ at 7.52 ppm^k.

with the *cis*. The lower reactivity of *trans*-FeCl₂-(DiNC)₂ may be due to its lower solubility and/or the need for it to isomerize to the *cis* form before reacting. In the reactions described in Scheme I, *cis*-FeCl₂(DiNC)₂ was used.

[cis-FeCl(CO)(DiNC)2] HgCl3

Mercuric chloride reacts at room temperature with cis-FeCl₂(DiNC)₂ to give a complex with the composition Fe(DiNC)₂Cl₂•HgCl₂. Other FeCl₂(CNR)₄ complexes with monodentate isonitrile ligands have been observed to react with HgCl₂ to give analogous products Fe(CNR)₄Cl₂•HgCl₂ [4, 7, 8]. Mays and Prater [7] described these complexes as containing an $HgCl_3$ group coordinated to the iron through the Hg atom, while Bonati and Minghetti [8] suggested the chloro-bridged structure

$$(RNC)_4Fe \begin{pmatrix} Cl \\ HgCl_2 \\ Cl \end{pmatrix}$$

in the solid state. The lack of definitive evidence prevents an unequivocal structural assignment to cis-Fe(DiNC)₂ Cl₂·HgCl₂; however, the known [10] chloro-bridged structure of cis-Pt(PMe₂Ph)₂ Cl₂·HgCl₂ and the large number of related compounds [11] suggests that cis-Fe(DiNC)₂ Cl₂ ·HgCl₂ probably also has the chloro-bridged structure.

As cis-FeCl₂(p-CNC₆ H₄ OMe)₄ ·HgCl₂ reacts with CO and CNR to give [FeCl(L)(p-CNC₆ H₄OMe)₄]-HgCl₃ [7], so Fe(DiNC)₂ Cl₂ ·HgCl₂ reacts at room temperature with CO and CNMe to yield [FeCl-(CO)(DiNC)₂]HgCl₃ and [FeCl(CNMe)(DiNC)₂]-HgCl₃, which are assigned *cis* structures based on the similarity of their ν (CN) absorptions (Table I) to those of *cis*-FeCl₂(DiNC)₂ and *cis*-Fe(DiNC)₂ Cl₂ · HgCl₂.

The room temperature reaction of cis-FeCl₂-(DiNC)₂ with one equivalent of SnCl₂·2H₂O leads to cis-FeCl(DiNC)₂(SnCl₃); using a large excess of SnCl₂·2H₂O yields the product with two SnCl₃⁻ ligands, *cis*-Fe(SnCl₃)₂(DiNC)₂. Both of these yellow to yellow-orange complexes are believed to have *cis* structures based on the similarity of their ν (CN) spectra to those of the other *cis* structures noted above and by comparison with spectra of the related *cis*-FeCl(*p*-CNC₆ H₄ OMe)₄ (SnCl₃) and *cis*-Fe(SnCl₃)₂(*p*-CNC₆ H₄ OMe)₄ complexes [7].

The substantial ionic conductivities of cis-FeCl₂- $(p-\text{CNC}_6\text{H}_4\text{OMe})_4$ [7] and $cis-\text{FeCl}_2(p-\text{CNC}_6\text{H}_4 Me_{4}$ [8] in nitromethane and acetone, respectively, suggest that Cl⁻ dissociation occurs in these solutions. It also suggests that a CI^- in cis-Fe $Cl_2(DiNC)_2$ could be readily displaced by other ligands. Indeed, the room temperature reactions of cis-FeCl₂(DiNC)₂ with CO, PPh₃, AsPh₃, P(OPh)₃ and C₅H₅N lead to stable $FeCl(L)(DiNC)_2^*$ complexes which are readily isolated as their BPh_4^- salts. A cis structure for these complexes should yield 4 IR-active $\nu(CN)$ bands, whereas a *trans* structure would give 2 ν (CN) bands assuming C_{4v} local symmetry. As can be seen in Table I, the complexes are observed to have 2 or 3 ν (CN) absorptions in Nujol mulls. The lowest frequency $\nu(CN)$ band is very broad and could obscure other bands that would be expected for the cis isomer. It has been noted previously that structural assignments to isonitrile complexes based on their $\nu(CN)$ spectra are often not conclusive [12], especially in the solid state where additional splittings may occur. Thus, it is not possible to specify unequivocally the structure of the $FeCl(L)(DiNC)_2^{\dagger}$ complexes; their yellow-to-orange colors, however, are very similar to that of cis-FeCl₂(DiNC)₂, which hints that they may have the *cis* structure. The only previously reported complexes which are similar to these are FeX(PPh₂OEt)(p-CNC₆H₄-Me)₄⁺, where X = Br or I [13]. They were assigned trans structures based on the 2 observed $\nu(CN)$ absorptions and equivalent methyl groups in all the isonitrile ligands in ¹H NMR spectra of the complexes.

Of all of the complexes studied herein, in only trans-FeCl₂(DiNC)₂ would the ethylene protons of the DiNC ligands be expected to be equivalent. However, its ¹H NMR spectrum was not obtained due to its low solubility. The ethylene protons of all other compounds should be inequivalent. Spectra of these compounds (Table I) contain at least one very broad ethylene absorption and often two broad bands. Even in the most symmetrical complex *cis*-

FeCl₂(DiNC)₂, all 4 ethylene protons are inequivalent and should lead to a complex ¹H NMR pattern; only one broad absorption is observed. Were the FeCl(L)(DiNC)²₂ complexes to have a *trans* geometry, A_2B_2 patterns would be expected for the ethylene protons. In the *cis* geometry, all 4 ethylene protons would be inequivalent. Unfortunately, the broadness of the bands prevents an unequivocal *cis* or *trans* structural assignment to the FeCl(L)(DiNC)²₂ complexes.

In conclusion, the chemistry of the Fe(II)-DiNC complexes is very similar to that of analogous monodentate phenyl and substituted phenyl isonitrile complexes. Aside from requiring *cis* coordination of the isonitrile donors in DiNC, the ligand properties of DiNC are not appreciably different from those of related aryl isonitrile ligands.

Acknowledgement

This material is based upon work supported by the National Science Foundation under Grant CHE78-07913.

References

- R. J. Angelici, M. H. Quick, G. A. Kraus and D. T. Plummer, *Inorg. Chem.*, 21, 2178 (1982).
- 2 R. J. Angelici, M. H. Quick and G. A. Kraus, Inorg. Chim. Acta, 44, L317 (1980).
- 3 M. L. Winzenburg, J. A. Kargol and R. J. Angelici, to be submitted.
- 4 L. Malatesta, A. Sacco and G. Padoa, Ann. Chim. (Rome), 43, 617 (1953).
- 5 F. Canziani, F. Cariati and U. Sartorelli, Ist. Lomb. (Rend. Sci.), A98, 564 (1964).
- 6 R. C. Taylor and W. D. Horrocks, Jr., Inorg. Chem., 3, 584 (1964).
- 7 M. J. Mays and B. E. Prater, J. Chem. Soc. (A), 2525 (1969).
- 8 F. Bonati and G. Minghetti, J. Organometal. Chem., 22, 195 (1970).
- 9 J. W. Schindler, J. R. Luoma and J. P. Cusick, *Inorg. Chim. Acta*, 10, 203 (1974).
- 10 R. W. Baker, M. J. Braithwaite and R. S. Nyholm, J. Chem. Soc. Dalton, 1924 (1972).
- 11 P. A. W. Dean, Progress Inorg. Chem., 24, 121 (1978).
- 12 F. A. Cotton and F. Zingales, J. Am. Chem. Soc., 83, 351 (1961).
- 13 G. Albertin, E. Bordignon, S. Calogero, A. A. Orio and G. Pelizzi, J. Organometal. Chem., 157, 51 (1978).